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Abstract 

In this study, a hydrofoil is slotted to passively control the cavitating flow features. Here, we would 

like to investigate the effect of the slot location and the slot angle on the cavity size and the lift 

coefficient as well. For this aim, preconditioned Euler equations are considered as the governing 

equations. The Frink numerical method is developed here to discretize the spatial terms in these 

equations. So that controlling the artificial oscillations and for stability reasons, an artificial 

dissipation term with an appropriate sensor is utilized. The numerical method is validated by the 

simulation of the sheet and mid-chord cavitation flows over NACA 66 (MOD). Then, a multi-

objective optimization is done to find a slotted NACA 66 (MOD) hydrofoil with objective 

functions, which are maximization of the lift coefficient and minimization of the total length of 

the cavity. For constructing an optimizer, a surrogated model based on the kriging metamodel and 

the genetic algorithm are used. Initial sample points are obtained using the Latin Hypercube 

algorithm. The outcome of the optimization process is an optimized slotted NACA 66 (MOD) 

hydrofoil satisfying the cost functions defined. In addition, different maps including a variation of 

the total length of the cavity, the length of the leading-edge and mid-chord cavities created by the 

slot, and the lift coefficient with respect to the slot location and the slot angle are obtained. These 

maps show how the cavity size and lift coefficient will be affected by changing the slot location 

and the slot angle and they are useful for designing purposes. Indications are that while using the 

slot can favorably reduce the total length of the cavity, it will also undesirably reduce the lift 

coefficient.  
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1. Introduction 

Cavitating flows are widely seen in many practical applications, for instance, they occur in pumps, 

pipes, hydro turbines, and blood vessels, or on the watercraft including ships, boats, amphibious, 

submarines, and hovercraft. The Cavitation will take place when the liquid is accelerated and 

consequently the local pressure becomes lower than the vapor pressure. In such a condition, the 

preexisted vapor nucleus will grow in the liquid medium and eventually create a cavity pocket 

filled with both liquid and many vapor nucleus. When these nuclei arrive at places with higher 

pressures, condensation occurs. In the condensation process, the nucleus violently collapses and 

high-pressure waves will be generated that cause erosion, annoying sounds, and vibration that may 

cause a shorter lifetime for the product and affect its performance. The flow control techniques 

can be used to avoid these unfavorable things. Different cavitation types have been explored in 

nature, for instance, sheet cavitation, vortex cavitation, and cloud cavitation [1], and they have 

been widely investigated, however, less attention has been made to controlling this type of flows. 

Flow control techniques can be categorized into passive and active methods, and both of them 

have been previously used for controlling cavitating flows. In the case of active flow control, 

different methods such as the injection [2-5] or suction [6] are used to control the cavitation flows. 

The passive flow control methods because of the advantages of simplicity and economic efficiency 

in comparison with the active flow control methods, are more applied to real applications. 

Different passive control methods have been utilized for controlling cavitating flows, for example, 

vortex generators [7, 8], leading-edge slats [9], leading-edge serration [10], slotted hydrofoils [11-

15], micro-cylinders [16], hydrofoils with cavity [17], Roughness [18], and flexible hydrofoil [19].   

A few studies about the slotted hydrofoil have been performed in the literature [11-15]. Note that, 

in the literature [13, 14], the work of Qun et al. [9] has been mentioned as the origin of the slotted 

hydrofoil used for the cavitation control, however, we think it is a slatted hydrofoil which is 

basically different from the slotted hydrofoil, and the idea of using slotted hydrofoils comes from 

the work of Capurso et al. [11]. Capurso et al. [11, 12] have proposed a passive control system 

consisting of three slots located near the leading-edge of the NACA 0009 hydrofoil. Their results 

show a 93% reduction for the total length of the cavity, but a 25% reduction in the lift coefficient. 

The optimization has not been performed by them. 
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Conesa and Liem [13, 14] have studied the effect of the entry and exit widths of the slot and its 

angle on the performance of the Clark-Y hydrofoil, but they have fixed the slot location near the 

leading-edge in the optimization process. Their study shows that the optimized slotted hydrofoil 

can achieve higher performance with a 50% reduction in cavity pocket in comparison with the 

base hydrofoil.  

An experimental and numerical study has been done by Ni et al. [15] to investigate the performance 

of a slotted hydrofoil operating close to a free surface. The slotted hydrofoil is constructed from 

the base hydrofoil NACA 634-021. No optimization has been performed, and the slotted hydrofoil 

had a better performance in comparison with the base hydrofoil. 

Here, the sheet cavitation is focused on checking the effectiveness of the use of a slot for 

controlling cavitating flows over a hydrofoil. In addition, NACA 66 (MOD) is served as the base 

hydrofoil because of its wide usage in many products. 

Physics of the cavitating flows can be investigated by considering inviscid, laminar, and turbulent 

fluid flow depending on the fluid flow conditions. By assuming water as the main medium, the 

Reynolds number is often high in real applications so that the laminar cavitating flow can be only 

seen seldom, however, the inviscid flow condition can provide acceptable results. The pressure 

distribution over the hydrofoil determines the cavity pocket size and the lift coefficient, and they 

can reasonably be captured by the solution of Euler equations. In inviscid flow simulation, a fewer 

number of grid points in comparison with turbulent flows are required in simulations and then the 

computational cost can dramatically be decreased. 

The system of equations governing the cavitating flows has to be solved using an appropriate 

numerical method. Different methods have been utilized in the literature for solving these 

governing equations, such as the central finite difference [20], compact [21], central finite volume 

[22], Quadratic Upstream Interpolation for the Convective Kinematics (QUICK) [23], weighted 

essentially non-oscillating (WENO) [24], immersed boundary [25], upstream finite element [26], 

and discontinuous Galerkin [27, 28] methods. Here, the Frink numerical method [29] is applied to 

discretize the governing equation, and an appropriate artificial dissipation term, based on the one 

proposed by Jameson et al. [30], is added for suppressing artificial oscillations in the solution 

domain and to provide a stable and accurate solution. By this method, we are able to simulate 

cavitating flows with reasonable accuracy and computational time.  
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Nowadays, designing an engineering artifact usually requires to solve a complicated optimization 

problem often involving multiple objectives. The solution to these complex design optimization 

problems, such as the problem that is addressed in this paper, are generally computationally 

expensive. In order to reduce the computational costs metamodel approximations are intensively 

used in the literature [31, 32]. Metamodels use limited combinations of inputs (sample points) and 

outputs to provide a mapping from the input space to the output space which essentially reduces 

the computational cost [33, 34]. 

Metamodels are used in a wide variety of applications and come in several forms. Metamodels can 

be either deterministic or stochastic, low-order or high-order polynomial regression models, 

discrete or continuous, and local or global. Some of the better-known metamodels are the 

Multivariate Adaptive Regression Splines, Radial Basis Function, Polynomial Regression, Neural 

Networks, Kriging, etc. [31]. The advantages or disadvantages of metamodels vary case by case 

and we cannot easily say essentially one of them is better than the others, and an extensive study 

is needed between metamodels to judge their priority, which is beyond the scope of the paper. 

In this paper, a Kriging metamodel is used. Kriging metamodel is a global, continuous, 

deterministic, and high-order regressional model [34]. Developed originally in geostatistics, which 

is later used in many engineering disciplines [35]. The Kriging interpolation not only generates a 

metamodel, but it also estimates the uncertainty of the generated output. The Kriging method is 

essentially a maximum likelihood estimator. Like any other maximum likelihood estimators, 

Kriging is also facing difficulties as the correlation matrix becomes singular if the sample points 

are not chosen appropriately. Thus, Choosing the sample data points is of paramount importance 

to have a Kriging metamodel that both represents the design space adequately and does not 

encounter any numerical difficulties. Usually to determine the sample points the theory of the 

Design of Experiments (DoE) is employed. Several used DoE methods are the factorial, central 

decomposition, alphabetical optimal, and Box-Behnken methods [36, 37]. These methods usually 

tend to push the sample points towards the boundaries of the design space. More recent methods 

address this problem and try to uniformly distribute the sample points within the boundaries. To 

name a few, Maximum Entropy, MiniMax, Orthogonal Arrays, and Latin Hypercube algorithms 

can be mentioned [31, 32, 36]. Latin Hypercube Sampling (LHS) is a straightforward well-
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established sampling method in the literature that is chosen to be used in this research. In LHS an 

even random sampling is employed and then all the chosen variables are randomly combined to 

give the samples required. 

While the metamodels together with DoE methods are used to find out the optimization functions 

defined in the design space, the optimizers are required to figure out where minimums occur. The 

optimizers can be categorized into two gradient-based and gradient-free groups [38]. As the name 

suggests, a gradient-based optimizer uses the gradient of the objective function to find the optimum 

solution. This dependence on the gradient raises two main issues. First, to use a gradient-based 

optimizer the gradient of the function must be either known analytically or computed numerically. 

This increases the computational cost. Second, and more importantly, a gradient-based optimizer 

can get stuck in a local optimum. On the other hand, a gradient-free/heuristic/Metaheuristics 

optimizer uses a random operator to search the design space. Decades of research resulted in the 

development of many Metaheuristics. To name a few well-known metaheuristics, we may mention 

Particle Swarm Optimization (PSO), Differential Evolution (DE), Genetic Algorithms (GA), and 

Ant Colony Optimization (ACO) [39]. Inspired by Darwin’s natural evolution theory, the GA 

mimics the natural evolution to find the optimal solution [38, 40]. Within the GA, the design 

parameters are interpreted as characteristics of individuals. Taking all individuals among a 

population, the solutions evolve through cross-over, mutation, and elitism operators to find the 

optimum.  

The random operator helps the Genetic Algorithm to explore the design space better and the 

gradient-independence empowers it to deal with any kind of objective function. This rigorous 

searching capability grants the metaheuristics and the GA particularly the name “global 

optimization methods”. Nevertheless, the exploration capability comes at a cost. The GA usually 

requires more function evaluations than gradient-based optimizers to converge. This usually makes 

it difficult to use the metaheuristics for computationally expensive problems [38]. 
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2. Governing equations 

Steady inviscid cavitating fluid flows are governed by preconditioned Euler equations with 

exploiting the artificial compressibility method can be written as follows: 

𝚷
𝜕𝑸

𝜕𝜏
+

𝜕𝑭

𝜕𝑥
+

𝜕𝑮

𝜕𝑦
− 𝑺𝒄 = 0 (1) 

where 𝚷 indicates the preconditioning matrix which is 

𝚷 =

[
 
 
 
 
 

1

𝜌𝑚𝛽2
0 0 0

0 𝜌𝑚 0 𝑢Δ𝜌𝑙

0 0 𝜌𝑚 𝑣Δ𝜌𝑙
𝛼𝑙

𝜌𝑚𝛽2
0 0 1

]
 
 
 
 
 

 (2) 

The artificial time is denoted by 𝜏 and derivatives with respect to this variable should go to zero 

for satisfying the consistency and convergence conditions. This means that this formulation can 

be used only for steady-state solutions. This is corresponding with the physics we are dealing with 

because we are going to optimize a hydrofoil experiencing quasi-steady sheet cavitation flow. The 

cavitation source term 𝑺𝒄 plays an important rule in cavitation modeling and it is defined in a way 

to appropriately model the mass transfer between the liquid and vapor phases that occurred in the 

cavitation process. We will further discuss this term in the next section. The flux vectors 𝑯 =

(𝑭, 𝑮) and the solution vector 𝑸 are written as follows: 

𝑸 = [

𝑝
𝑢
𝑣
𝛼𝑙

] ,   𝑭 = [

𝑢
𝜌𝑚𝑢2 + 𝑝

𝜌𝑚𝑢𝑣
𝛼𝑙𝑢

] ,   𝑮 = [

𝑣
𝜌𝑚𝑢𝑣

𝜌𝑚𝑣2 + 𝑝
𝛼𝑙𝑣

] (3) 

The solution vector is consist of the pressure 𝑝, the velocity vector (𝑢, 𝑣), and the liquid volume 

fraction 𝛼𝑙. The subscribes 𝑙, 𝑣, and 𝑚 are added to facilitate identifying the liquid, vapor, and 

mixture states. While the liquid density 𝜌𝑙 and 𝜌𝑣 are supposed to be constant, the mixture density 

is allowed to vary according to the relation 𝜌𝑚 = 𝛼𝑙𝜌𝑙 + 𝛼𝑣𝜌𝑣. Note that the summation of volume 

fraction of different phases is always unity, i.e., 𝛼𝑙 + 𝛼𝑣 = 1. Moreover, 𝜌𝑙 = 1 and 𝜌𝑣 = 0.01 are 
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used here that prove to be suitable values for simulating cavitating flows in a water medium. In 

Eq. (2), the density jump is indicated by Δ𝜌𝑙 = 𝜌𝑙 − 𝜌𝑣. 

Following the concept of the artificial compressibility method, the artificial compressibility 

coefficient denoted by 𝛽 is used in the governing equations to tackle the pressure-velocity coupling 

problem pertaining to incompressible flows. It is a user-defined parameter and here we simply use 

a constant value 𝛽 = 3 similar to [27, 41]. 

2.1. Cavitation modeling 

As mentioned in the previous section, the cavitation process is modeled by the cavitation source 

term 𝑆𝑐 which is 

𝑺𝒄 =

[
 
 
 
 (𝑚̇+ + 𝑚̇−) (1 −

1

𝜌𝑣
)

0
0

𝑚̇+ + 𝑚̇− ]
 
 
 
 

 (4) 

where 𝑚̇− models the evaporation phenomena which is the mass transfer from the liquid to the 

vapor phase, and it is vice versa for 𝑚̇+ which represents the condensation process wherein the 

vapor phase transits to the liquid phase. These two variables are differently defined in the literature 

[42-46]. Here, the relations proposed by Merkel et al. [42] is exploited, i.e., 

𝑚̇+ = (
𝐶𝑝𝑟𝑜𝑑

𝑡∞
) (1 − 𝛼𝑙)𝑀𝑎𝑥(0, 𝑝 − 𝑝𝑣) 

𝑚̇− = (
𝐶𝑑𝑒𝑠𝑡

𝑡∞
)

1

𝜌𝑣
 𝛼𝑙𝑀𝑖𝑛(0, 𝑝 − 𝑝𝑣) 

(5) 

These relations have been proposed by Merkel et al. [42] that derived from their experimental 

work. Numerical studies [27, 47] show that these relations are reliable and accurate for simulating 

cavitating flows. The parameters 𝐶𝑝𝑟𝑜𝑑/𝑡∞ and 𝐶𝑑𝑒𝑠𝑡/𝑡∞ are the constant parameters which 

control the liquid production and destruction rates, respectively. They are user-defined parameters 

where 𝐶𝑝𝑟𝑜𝑑/𝑡∞ = 1 and 𝐶𝑑𝑒𝑠𝑡/𝑡∞ = 80 are used here. Numerical studies done in literature [27, 

47] prove these values lead to accurate numerical results. Finally, the vapor pressure 𝑝𝑣 is obtained 

according to the predefined cavitation number 𝜎 = 2(𝑝∞ − 𝑝𝑣) where 𝑝∞ is the pressure far 

enough from the hydrofoil surface which is assumed unit. Note that all the variables used in the 

present study are non-dimensional identical to the ones presented in [27]. 
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3. Numerical method 

3.1. Spatial discretization 

So that being able to simulate cavitating flows, we should suitably address the solution of the 

governing equation (1) by means of a numerical method. Here, the Frink numerical method is used 

to discretize the spatial derivative terms in the governing equations.  

By integrating Eq. (1) through the surface A of an element, it can be rewritten as 

∫ [𝚷
𝜕𝑸

𝜕𝜏
+

𝜕(𝑭)

𝜕𝑥
+

𝜕(𝑮)

𝜕𝑦
− 𝑺𝒄] 𝑑A

𝐀

= 0 (6) 

In the finite volume method variables are assumed to be constant through an element, then 

∫ 𝚷
𝜕𝑸

𝜕𝜏
𝑑A

𝐀

= 𝚷
𝜕𝑸

𝜕𝜏
A (7) 

For the spatial derivative of inviscid fluxes, we have 

∫ [
𝜕𝑭

𝜕𝑥
+

𝜕𝑮

𝜕𝑦
] 𝑑A

𝐀

= ∫[𝛁 ∙ 𝑯]𝑑A

𝐀

 (8) 

and then using the divergence theorem applied to triangular domain results in 

∫[𝛁.𝑯]𝑑A

𝐀

= ∮ [𝑯∗. 𝒏̂] 𝑑𝐿
𝛛𝐀

= ∑ (𝑯∗. 𝒏̂)𝒌𝐿𝑘

𝑵𝒇𝒂𝒄𝒆𝒔=𝟑

𝒌=𝟏

 (9) 

where 𝑯𝒌
∗  is the numerical flux for the 𝑘-th face of the element, and it depends on the flux vectors 

in two neighboring elements sharing that face. After finding the flux vectors in two neighboring 

elements by exploiting the Frink numerical method, the Lax numerical flux method is used to 

calculate the numerical flux. The calculation of the Lax numerical flux method will be explained 

later. Variable 𝒏̂ is the normal outward vector. The face length of the triangle element is denoted 

by 𝐿.  

The integration of the cavitation source term 𝑺𝒄 can be written as 
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∫ 𝑺𝒄 𝑑A

𝐀

= 𝑺𝒄 A (10) 

The integration of the artificial dissipation terms should be carefully evaluated and it will be 

addressed in the next section. Finally, the discretization process, by substituting Eqs. (7)-(10) into 

(6),  results in 

𝜕𝑸

𝜕𝜏
=

𝚷−𝟏

𝐴
[𝑺𝒄 A − ∑ (𝑯∗. 𝒏̂)𝒌𝐿𝑘

𝑵𝒇𝒂𝒄𝒆𝒔

𝒌=𝟏

] = 𝑹 (11) 

where 𝑅 is called the right-hand side vector. 

3.1.1. The Frink numerical method 

The higher-order finite volume methods can be derived using reconstructing fluxes at the element 

faces. To show how the Frink numerical method can be used to increase the order of accuracy of 

the solution from the first-order in the classical finite volume method to the second-order one, refer 

to Fig. 1. While in the classical first-order finite volume methods variables at the faces can be read 

as 𝑞𝑓1 = 𝑞𝑓2 = 𝑞𝑓3 = 𝑞𝑐, in the Frink numerical method [29], they are reconstructed as follows: 

𝑞𝑓1 = 𝑞𝑐 +
1

3
[
1

2
(𝑞𝑛1

+ 𝑞𝑛2
) − 𝑞𝑛3

] 

𝑞𝑓2 = 𝑞𝑐 +
1

3
[
1

2
(𝑞𝑛2

+ 𝑞𝑛3
) − 𝑞𝑛1

] 

𝑞𝑓3 = 𝑞𝑐 +
1

3
[
1

2
(𝑞𝑛1

+ 𝑞𝑛3
) − 𝑞𝑛2

] 

(12) 

The remaining variables to be defined are the nodal values denoted by 𝑞𝑛1
, 𝑞𝑛2

, and 𝑞𝑛3
. An area-

weighted average, among the elements sharing the node, is used to calculate values in nodes.  
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Fig. 1 Nomenclatures used for constructing fluxes in the Frink numerical method. 

 

 

 

3.1.2. Numerical flux 

The Lax numerical flux is used here to address the Riemann problem for the jumps between two 

neighboring elements. If the flux in a face is denoted by the subscript 𝐿 and its neighbor’s value 

by 𝑅, then 

𝑯𝒌
∗ =

𝟏

𝟐
(𝑯𝑳 + 𝑯𝑹 − 𝐶𝜆𝚷(𝑸𝑹 − 𝑸𝑳)) (13) 

where 𝜆 is the largest eigenvalue of the system of equations 

𝜆 = √𝑢𝐿
2 + 𝑣𝐿

2 + √𝑢𝐿
2 + 𝑣𝐿

2 + 𝛽2 (14) 

and 𝐶 is a constant parameter with 𝐶 ≤ 1 for satisfying stability conditions. Selecting higher values 

for 𝐶 means adding more dissipation to the solution domain that may cause reducing global 

accuracy. Here, 𝐶 = 0.25 is used to consequently provides accuracy and stability needs.  

q
f3

q
c

q
n3

q
f2

q
f1

q
n1

q
n2
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3.1.3. Artificial dissipation 

Although discretization has been done, we should care about the artificial non-physical oscillations 

that occur near the cavity zone which could make the solution unstable. To prevent such 

undesirable oscillations in the solution, the artificial dissipation term 𝑫 [30] is added to the right-

hand side of Eq. (11) as follows: 

𝜕𝑸

𝜕𝜏
= 𝑹 + 𝑫 = 𝑹′ (15) 

The artificial dissipation for the 𝑗-th element can be written as: 

𝑫𝒋 = ∑ 𝒅𝑗𝑘

𝑁𝑓𝑎𝑐𝑒𝑠=3

𝑘=1

 (16) 

where 𝑘 indicates the face number. If the solution vector in neighbor element through the 𝑘-th face 

is shown by 𝑄𝑗
𝑘, then the dissipation term can be written as follows: 

𝒅𝒋𝒌
= −(

𝐴𝑗

∆𝜏
+

𝐴𝑗
𝑘

∆𝜏
) [

𝜀𝑗𝑘

2
(𝑸𝒋 − 𝑸𝒋

𝒌)] (17) 

where ∆𝜏 is the artificial time step. The artificial viscosity coefficient 𝜀 has to be determined such 

that tends to zero where the solution is smooth and to a definite value in non-smooth regions which 

normally occur near the cavity zone which is the origin of the artifact oscillations generated due 

to the sharp jump in the density variable across the interface of the two phases. In order to 

determine the artificial viscosity coefficient, we follow the idea presented in Jameson et al. work 

[30] which is: 

𝜀𝑗𝑘
= 𝜅𝜌𝛾𝑗𝑘

 

𝛾𝑗𝑘
= |

𝜌𝑗 − 𝜌𝑗
𝑘

𝜌𝑗 + 𝜌𝑗
𝑘| 

(18) 

and 𝜅𝜌 = 0.025 is chosen here.  
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3.2. Temporal discretization 

The Euler method is used here for discretizing the temporal derivative in Eq. (15) 

𝑄𝑚+1 − 𝑄𝑚

∆𝜏
= 𝑹′𝒎 (19) 

where superscript 𝑚 indicates the time-level.  

 

4. Optimization procedure 

Firstly, the number of optimization parameters or constraints should be determined. Those are the 

slot angle and the slot location with considered limitations here as 0° ≤ 𝜃 ≤ 85° and 0 ≤ 𝑥𝑠𝑙𝑜𝑡 ≤

0.4, respectively. The optimization parameters are geometrically introduced in Fig. 2. As shown 

in this figure, the slot location varies from the middle chord up to about the leading-edge and its 

angle is defined clockwise. Afterward, the Latin Hypercube Sampling method (LHS) with an 

affine mapping is used in order to generate initial sampling points 𝑁𝐿𝐻𝑆 in the design space. Here, 

initial sampling points are supposed to be 40 points. Then, the CFD simulations are performed for 

the given sampling points to calculate the lift coefficient and the total length of the cavity appeared 

on the hydrofoil that called the objective functions. The lift coefficient function is represented by 

𝐶𝑙 = 𝑓(𝑥𝑠𝑙𝑜𝑡 , 𝜃) and the total length of cavity is denoted by 𝐿𝑐 = 𝑔(𝑥𝑠𝑙𝑜𝑡 , 𝜃) will be found using 

Gaussian Process Regression or Kriging method which is exploited to construct the surrogate 

model. The lift coefficient can be calculated using the integral of the pressure in the direction 

perpendicular to the far-field flow divided by 0.5𝜌𝑢∞
2 . In the case of the total length of the cavity 

𝐿𝑐, it will be calculated using the following relation 

𝐿𝑐 = 𝐿𝑐1
+ 𝐿𝑐2

 (20) 

where 𝐿𝑐1
 denotes the length of the leading-edge cavity and 𝐿𝑐2

 is the length of the mid-chord 

cavity. The leading-edge cavity is a cavity formed on the front hydrofoil, and the mid-chord cavity 

is a cavity that appeared on the rear hydrofoil created by slotting the original hydrofoil. The length 

of the leading-edge/mid-chord cavity is the horizontal distance between two points where the 

pressure over the hydrofoil becomes lower than the vapor pressure and where it becomes higher 

than the vapor pressure. 
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These objective functions will be served as an input to a genetic algorithm (GA) to result in an 

accurate and fast optimization scheme. The Pareto front comes out from GA and the final design 

point will be selected from the set of points on the Pareto front. These operations will be repeated 

𝑁𝐺𝐴-th times. In each iteration, the new design points will be added to the older ones, i.e., 𝑁𝐿𝐻𝑆 

will be updated. Subsequently, CFD simulations, Krigin, and GA as well will be carried on. Here, 

𝑁𝐺𝐴 equals to 5 which means that five generations are considered in the genetic algorithm. The 

number of new design points will not be greater than 20 in each iteration, and if not, 20 points will 

be selected randomly. The latter is presumed to reduce the computational cost. This optimization 

procedure/algorithm is illustrated in Fig. 3. 

This optimization procedure is performed in Matlab. The information of the sampling points or 

the new design points will be automatically transformed into a meshing tool which is Gambit here 

to generate the mesh for the CFD tool. The CFD tool is also a homemade code using the Frick 

method as a discretization algorithm and C++ as a programming language.  

 

 

Fig. 2 Nomenclatures related to the optimization parameters, the total length of the cavity, the 

length of the leading-edge cavity, and the length of the mid-chord cavity. 
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Start

LHS (Nsamples) with affine mapping → θi 
and xslot i for i=1,2,…,Nsamples 

CFD → Cli and Lci for i=1,2,…,Nsamples

GACounter = 1

Kriging→Cl =f(θ,xslot) and Lc =g(θ,xslot) 

using Nsamples sample points

GA→θ and xslot where min(-Cl) and 

min(Lc) occure, i.e., Pareto front 

solutions

Npareto > 20

Npareto = Npareto, max

θi and xslot i for i=Nsamples+1,…,Nsamples +NPareto and 

selected randomly from Pareto front points

CFD → Cli and Lci for  i=Nsamples+1,…,Nsamples +NPareto 

Nsamples =Nsamples +NPareto

GACounter ≤NGA  

GACounter = GACounter  + 1

End

Yes

No

Yes

No

 

Fig. 3 Flowchart describing the optimization process. 
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5. Results 

In this section, the numerical results are presented. The numerical method is first evaluated in 

subsection 5.1 wherein the sheet/leading-edge and mid-chord cavitations have been simulated and 

are compared with the experimental data. After proving that the numerical method works fine, 

then the results for the slotted hydrofoil and its optimized shape will be discussed.  

 

5.1. Validation 

Once the original hydrofoil NACA 66(MOD) is slotted, instead of one cavity pocket over the 

original hydrofoil surface, two-cavity pockets might form over the modified hydrofoil. The first 

cavity pocket over the modified hydrofoil can be seen as a sheet/leading-edge cavity, and the 

second one is similar to the mid-chord cavity over the original hydrofoil. Thus, the sheet and mid-

chord cavitation phenomenon are simulated here to show that the numerical method arranged here 

can be effectively used for the optimization of the slotted hydrofoil. The sheet cavitation will be 

created over the original hydrofoil when water flows over NACA 66 (MOD) at the angle of attack 

𝛼 = 4° and cavitation number 𝜎 = 0.84, and by considering 𝛼 = 1° and 𝜎 = 0.43 the mid-chord 

cavitation will be formed.  

In Fig. 4, the generated grid with 16330 triangle elements is shown. The grid type is chosen to be 

triangular because they can be used over arbitrary and complex geometries such as the one we are 

dealing with in this paper, i.e., slotted hydrofoil. Moreover, they are suitably work in inviscid 

flows, because there is no need for having high-resolution grids close to the walls due to the 

presence of the boundary layer. As can be seen in Fig. 4, the radius of the far-field boundary is 

assumed ten times of the hydrofoil chord. Moreover, a finer grid is used close to the hydrofoil 

surface while a coarser grid is used far from its surface. Using high-resolution grids near the 

hydrofoil will help to sharply capture the cavity pocket, and a coarse grid near the far-field 

boundary will aid to damp the artificial incoming and outgoing waves occurred there.  

In Fig. 5, the numerical results for the simulation of the sheet cavitation over the original NACA 

66 (MOD) hydrofoil are illustrated. The density, pressure, and velocity magnitude contours 
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indicate that the cavitation phenomenon can be expected over the suction side of the hydrofoil 

wherein the velocity magnitude is increased and subsequently the pressure is decreased to a lower 

value than the vapor pressure. Moreover, the velocity magnitude immediately reduces when the 

cavity pocket is closed which is a sign for the re-entrant jet. In Fig. 5(d), the calculated surface 

pressure coefficient by the present numerical method is compared with the experimental data [48]. 

As can be seen in this figure, the agreement between numerical results is satisfactory. The pressure 

in the cavity pocket remains unchangeable that excellently follows experimental pieces of 

evidence. In addition, the pressure recovery at the trailing edge is captured by the present numerical 

method efficiently. 

In Fig. 7, the numerical results by utilizing the Frink numerical method are shown and compared 

with the experimental data [48]. Here, the mid-chord cavitation occurs. It means that the cavitation 

is not started from the leading-edge. Instead, it is started in the middle of the suction side and this 

is the reason it is called the mid-chord cavitation. As indicated in this figure, the numerical results 

obey the expected physical behaviors and also agrees with the experimental data. 

From the obtained numerical results for the simulation of these two cavitation types, it can be 

concluded that the numerical framework set up here can be used to effectively simulate different 

quasi-steady cavitation flows encountered in the present study. After validating the CFD, we are 

now ready to pay attention to the optimized slotted hydrofoil in the next section. 
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Fig. 4 Generated grid for the original NACA 66 (MOD) hydrofoil. 
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(a) 

 

(b) 

 

(c) 

Fig. 5 Contours of a) the density, b) the pressure, and c) the velocity magnitude with the 

streamlines computed by the Frink numerical method for the problem of cavitating flow over 

NACA 66 (MOD) at 𝜎 = 0.84 and 𝛼 = 4°. 
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Fig. 6 Comparison of the pressure coefficient obtained by the Frink numerical method and 

experimental data[48] for the problem of cavitating flow over NACA 66 (MOD) at 𝜎 = 0.84 and 

𝛼 = 4°. 

 

 

 

 

 

 

 

 

x

C
p

-0.4 -0.2 0 0.2 0.4

-1

-0.5

0

0.5

1

Frink

Experiment



20 
 

 

(a) 

 

(b) 

 

(c) 

Fig. 7 Contours of a) the density, b) the pressure, and c) the velocity magnitude with the 

streamlines computed by the Frink numerical method for the problem of cavitating flow over 

NACA 66 (MOD) at 𝜎 = 0.43 and 𝛼 = 1°. 
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Fig. 8 Comparison of the pressure coefficient obtained by the Frink numerical method and 

experimental data[48] for the problem of cavitating flow over NACA 66 (MOD) at 𝜎 = 0.43 and 

𝛼 = 1°. 
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5.2. Optimization of slotted hydrofoil 

The goal of this study is to optimize the slotted NACA 66 (MOD) hydrofoil immersed in water at 

cavitation number 𝜎 = 0.84 and angle of attack 𝛼 = 4°. As discussed in detail in the optimization 

procedure, 40 initial sampling points are used to train the optimizer. These initial sampling points 

are obtained by employing the Latin Hypercube Sampling, and these points are depicted in Fig. 

9(a). By advancing in the optimization procedure, new design points will be added to assess the 

objective functions and to find the optimum points. All the points used in the optimization process 

are illustrated in Fig. 9(b) and it can be seen that many new points are inserted in the upper right 

side of the figure where the slots are created close to the leading-edge with higher angles. It means 

that the optimizer seeks the optimal point there, and by adding many new points in that region, it 

improves the high-fidelity model. 

The output of the optimization will be the objective functions as a function of the optimization 

parameters, i.e., 𝐶𝑙 = 𝑓(𝑥𝑠𝑙𝑜𝑡, 𝜃) and 𝐿𝑐 = 𝑔(𝑥𝑠𝑙𝑜𝑡 , 𝜃). These objective functions can be 

constructed using any surrogated models such as the regression or fitting methods. Here a fitting 

method is used to reconstruct the objective functions when the optimization process has been 

ended.  

In Fig. 10, the contours related to 𝐿𝑐1
 and 𝐿𝑐2

 are shown. Form Fig. 10(a) it can be concluded that 

generally at a given slot location the leading-edge cavity will reach its minimum size around 𝜃 =

45°, while lower and higher angles than this angle will cause having larger leading-edge cavity 

size. At a given slot angle, moving the slot location from the middle to the leading-edge will 

favorably result in decreasing in 𝐿𝑐1
. Thus, smaller 𝐿𝑐1

 will be found around 𝜃 = 45° and high slot 

angles.  

In the case of 𝐿𝑐2
, as depicted in Fig. 10(b), at a given slot location the mid-chord cavity will reach 

its maximum size around 𝜃 = 60°, while lower and higher angles than this angle will cause having 

larger leading-edge cavity size. At a given slot angle, by increasing the slot location, 𝐿𝑐2
 will 
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disadvantageously increase. Thus, for having smaller 𝐿𝑐2
, higher slot angles should be used with 

a slot placed around the middle. 

The contours of the objective functions 𝐶𝑙 and 𝐿𝑐 are illustrated in Fig. 11 and it is obvious that 

the objective functions are purely non-linear with respect to optimization parameters. This figure 

can be very useful for engineers when they are designing artifacts to find out a design point passing 

their presumed criteria and to figure out how changing the design point would affect the 

performance of the artifact.  

According to the results plotted in Fig. 11, we can roughly argue that there are two domains where 

𝐿𝑐 becomes minimum 

𝐷𝑜𝑚(𝐿𝑐𝑚𝑖𝑛
)1 = {(𝜃, 𝑥𝑠𝑙𝑜𝑡) ∈ ℝ|25° < 𝜃 < 65° , 0 < 𝑥𝑠𝑙𝑜𝑡 < 0.15} 

𝐷𝑜𝑚(𝐿𝑐𝑚𝑖𝑛
)2 = {(𝜃, 𝑥𝑠𝑙𝑜𝑡) ∈ ℝ|72.5° < 𝜃 < 85° , 0.1 < 𝑥𝑠𝑙𝑜𝑡 < 0.4} 

(21) 

and there is one domain that 𝐶𝑙 becomes maximum 

𝐷𝑜𝑚(𝐶𝑙𝑚𝑎𝑥
) = {(𝜃, 𝑥𝑠𝑙𝑜𝑡) ∈ ℝ|40° < 𝜃 < 85°  , 0.15 < 𝑥𝑠𝑙𝑜𝑡 < 0.4} (22) 

Then, it is expected that the optimized points placed in the set stated hereunder: 

(𝐷𝑜𝑚(𝐶𝑙𝑚𝑎𝑥
) ∩ 𝐷𝑜𝑚(𝐿𝑐𝑚𝑖𝑛

)1) ∪ (𝐷𝑜𝑚(𝐶𝑙𝑚𝑎𝑥
) ∩ 𝐷𝑜𝑚(𝐿𝑐𝑚𝑖𝑛

)2)

= {(𝜃, 𝑥𝑠𝑙𝑜𝑡) ∈ ℝ|72.5° < 𝜃 < 85° , 0.15 < 𝑥𝑠𝑙𝑜𝑡 < 0.4} 
(23) 

which is exactly corresponding with the domain that the optimizer seeks for the optimal points as 

depicted in the right upper part of Fig. 9(b). It is evident that the optimization process is suitably 

designed and works appropriately. Before presenting the optimal points, it is important to assess 

the accuracy of the surrogate model and its validity. For this aim, at different points along the 

midlines of the design space, the CFD results are compared with the data extracted from the 

surrogate model that are given in Table 1. The percentage of the error is defined as 

𝐸𝑟𝑟𝑜𝑟(𝐿𝑐) =
|𝐿𝑐𝐶𝐹𝐷

− 𝐿𝑐𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒
|

𝐿𝑐𝐶𝐹𝐷

× 100 

𝐸𝑟𝑟𝑜𝑟(𝐶𝑙) =
|𝐶𝑙𝐶𝐹𝐷

− 𝐶𝑙𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒
|

|𝐶𝑙𝐶𝐹𝐷
|

× 100 

(24) 

and it is seen that the maximum percentage of the error in predicting 𝐿𝑐 is lower than 4.06 percent, 

while for 𝐶𝑙 this error is lower than 2.24. These amount of errors are in an acceptable range and it 
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can be concluded that the surrogate model is trained properly and is reliable. In Figs. 12 and 13, 

the density and pressure contours for points used in Table 1 are plotted. From Fig. 12 and Table 1 

it can be deduced that for 𝜃 = 42.5° and by pushing the slot from the middle chord to the leading-

edge, the lift coefficient is desirably increased while the total length of cavity is unfavorably 

increased. However, form Fig. 13 and Table 1 it can be seen that for 𝑥𝑠𝑙𝑜𝑡 = 0.2 and by increasing 

the slot angle, while 𝐿𝑐 is always desirably decreasing, 𝐶𝑙 is first decreasing and then increasing. 

In general, both of 𝐶𝑙(𝑥𝑠𝑙𝑜𝑡 , 𝜃) and 𝐿𝑐(𝑥𝑠𝑙𝑜𝑡 , 𝜃) are non-linear.  

In Table 2, the output of the optimization process which is the Pareto front is given. While any 

point in the Pareto front is a candidate to be served as an optimal point, another criterion should 

be added to help the optimal point selection. This criterion is arbitrary. Here, we are seeking a 

point that shows the best performance in comparison with the average values of all points in the 

Pareto front. These average values are indicated by 𝐿𝑐
̅̅̅ and 𝐶𝑙̅ and are presented in the last row. In 

other words, the optimal point would be a point with max (𝐿𝑐
̅̅̅ − 𝐿𝑐) and max (𝐶𝑙 − 𝐶𝑙̅) which is 

obtained for (𝜃, 𝑥𝑠𝑙𝑜𝑡) = (80.461,0.354). In Fig. 14, generated gird for the slotted hydrofoil is 

shown, and similar to the original hydrofoil illustrated in Fig. 4 a finder grid resolution is utilized 

in comparison with the one far enough from the hydrofoil surface. The pressure contour with 

streamlines and the density contour is depicted in Fig. 15. It can be seen that by the slot the fluid 

with higher-pressure on the lower surface of the hydrofoil is transmitted to the suction side with 

lower-pressure resulting in shrinking the cavity pocket. In fact, the high-pressure fluid is injected 

to the suction side with lower-pressure and prevents the pressure becomes lower than the vapor 

pressure and subsequently results in not to happen cavitation. However, injecting a high-pressure 

fluid over the hydrofoil will decrease the lift coefficient. This phenomenon can be clearly seen in 

Fig. 16 that the pressure coefficient over the surface of the optimized slotted hydrofoil is compared 

with the original hydrofoil. In this way, we are able to favorably shrink the cavity pocket, but the 

lift coefficient will be disadvantageously decreased. Basically, imposing higher pressure over the 

upper surface of the hydrofoil will cause a downward force that means decreasing in the lift. The 

total length of the cavity that appeared on the suction side for the optimized slotted hydrofoil is 

𝐿𝑐 = 0.2006, while it is 0.482 for the original hydrofoil that shows an improvement. In the case 

of the lift coefficient, it equals 0.6098 for the optimized slotted hydrofoil while it is 0.688 for the 

original hydrofoil that shows a deterioration. These results indicate that with a penalty of about 

11.4% in the lift coefficient, it is possible to decrease the cavity size by about 58.4%.  
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(a) 

 

(b) 

Fig. 9 a) Initial sampling using 40 points and b) final training samples. 



x
s

lo
t

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4



x
s

lo
t

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4



26 
 

 

 

 

(a) 

 

(b) 

Fig. 10 Contours for a) 𝐿𝑐1
 and b) 𝐿𝑐2

 obtained using the fitting method. 
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(a) 

 

 

(b) 

Fig. 11 Contours for a) 𝐿𝑐 and b) 𝐶𝑙 obtained using the fitting method. 
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Table 1 Investigation of the accuracy of the surrogate model 

𝜃 𝑥𝑠𝑙𝑜𝑡 
CFD Surrogate model Error (%) 

𝐿𝑐 𝐶𝑙 𝐿𝑐 𝐶𝑙 𝐿𝑐 𝐶𝑙 

42.5° 0.00 0.118 0.476 0.123 0.484 4.778 1.591 

42.5° 0.20 0.231 0.519 0.222 0.514 3.723 0.966 

42.5° 0.40 0.323 0.564 0.339 0.577 4.978 2.244 

        

0.0° 0.20 0.284 0.574 0.297 0.575 4.532 0.068 

42.5° 0.20 0.231 0.519 0.222 0.514 3.723 0.966 

85.0° 0.20 0.157 0.584 0.162 0.586 2.852 0.286 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

 

(a) 

 

(b) 

 

(c) 

Fig. 12 The pressure (left column) and density (right column) contours for 𝜃 = 42.5° and a) 

𝑥𝑠𝑙𝑜𝑡 = 0.0, b) 0.2, and c) 0.4 
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(a) 

 

(b) 

 

(c) 

Fig. 13 The pressure (left column) and density (right column) contours for 𝑥𝑠𝑙𝑜𝑡 = 0.2 and a) 

𝜃 = 0.0°, b) 42.5°, and c) 85.0°. 
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Table 2 Pareto front points (GA output) 

𝜃 𝑥𝑠𝑙𝑜𝑡 𝐿𝑐 𝐶𝑙 𝐿𝑐
̅̅̅ − 𝐿𝑐 𝐶𝑙 − 𝐶𝑙̅  

84.545 0.003 0.1293 0.5976 0.0814 -0.0119 
 

80.780 0.094 0.1945 0.6091 0.0162 -0.0005 
 

79.936 0.192 0.2107 0.6112 0.0001 0.0017 
 

78.943 0.138 0.2295 0.6132 -0.0187 0.0036 
 

75.576 0.146 0.2882 0.6169 -0.0775 0.0073 
 

80.461 0.354 0.2006 0.6098 0.0102 0.0003 
Selected 

79.473 0.284 0.2196 0.6123 -0.0089 0.0028 
 

76.866 0.339 0.2676 0.6164 -0.0569 0.0068 
 

82.397 0.111 0.1648 0.6046 0.0460 -0.0050 
 

78.373 0.198 0.2402 0.6143 -0.0295 0.0047 
 

77.263 0.247 0.2605 0.6158 -0.0497 0.0063 
 

82.786 0.003 0.1578 0.6033 0.0529 -0.0063 
 

82.999 0.047 0.1542 0.6027 0.0566 -0.0069 
 

83.464 0.202 0.1465 0.6014 0.0643 -0.0082 
 

78.811 0.302 0.2322 0.6136 -0.0215 0.0041 
 

76.170 0.073 0.2786 0.6165 -0.0679 0.0070 
 

84.996 0.001 0.1228 0.5961 0.0880 -0.0135 
 

75.117 0.400 0.2958 0.6173 -0.0850 0.0077 
 

  𝐿𝑐
̅̅̅ = 0.2107 𝐶𝑙̅ = 0.6096    
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Fig. 14 Generated grid for the optimal slotted NACA 66 (MOD) hydrofoil. 
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(a) 

 

(b) 

Fig. 15 The pressure (left column) and density (right column) contours for a) the original 

hydrofoil and for b) the optimized slotted hydrofoil. 
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(a) 

       

(b) 

Fig. 16 a) pressure coefficient distribution over the hydrofoil surfaces and b) their corresponding 

shape and the cavity pocket indicated by 𝐶𝑝 = −𝜎. 
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6. Conclusion 

In this paper, optimization is done to find out the slot location and the slot angle that result in 

maximizing the lift coefficient and minimizing the total length of the cavity. Through the 

optimization procedure, a computational fluid dynamic (CFD) solver is required to provide the lift 

coefficient and the total length of the cavity for the optimizer. For this aim, the Frink numerical 

method is used here to discretize the spatial terms in the preconditioned Euler equations based on 

the artificial compressibility method. The artificial dissipation terms are added to these equations 

for stability reasons and a sensor is used to retain the solution accuracy in smooth regions. 

Moreover, source terms that model the cavitation process are also added to the equations. The 

optimizer is constructed using a surrogated model based on the kriging metamodel and the genetic 

algorithm. Here, the Latin Hypercube algorithm is used to generate initial sample points. The 

outcome of the optimization process is an optimized slotted NACA 66 (MOD) hydrofoil satisfying 

the cost functions defined. Some conclusions and remarks regarding the present work are as 

follows: 

- The comparison between results obtained by the CFD solver and available experimental results 

shows that the numerical method proposed here can be effectively used for simulating 

cavitating flows and can be considered as an alternative for the other cavitating flow solvers. 

- For the original hydrofoil NACA 66 (MOD), one cavity pocket is formed on its suction side. 

However, in the slotted hydrofoil, two cavities will be emerged on the hydrofoil surface, 

namely, the leading-edge and mid-chord cavities. Smaller leading-edge cavity size will be 

found around 𝜃 = 45° and at high slot angles. In the case of the mid-chord cavity, higher slot 

angles should be used with a slot placed around the middle. 

- From the results obtained it can be concluded that high slot angles and high slot locations 

desirably result in the small total length of the cavity 𝐿𝑐 and high lift coefficient 𝐶𝑙. 

- The surrogated mode is examined against CFD results which shows a good agreement, thus it 

can be reliably used in the genetic algorithm for optimizing purposes.  

- Results obtained for the optimum design point selected from the Pareto front show that with a 

penalty of about 11.4% in the lift coefficient, it is possible to decrease the cavity size by about 

58.4%. 
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- The contours for the lift coefficient, the total length of the cavity, the length of the leading-

edge cavity, and the length of the mid-chord cavity obtained in this study can be used by 

engineers to figure out how deviation from the optimum point can affect the performance of 

their products. 
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